❯ Guillaume Laforge

Ai-Agents

Vibe-coding a Chrome extension with Gemini CLI to summarize articles

I often find myself staring at a wall of text online. It could be a lengthy technical article, a detailed news report, or a deep-dive blog post. My first thought is often: “Is this worth the time to read in full?” On top of that, for my podcast, Les Cast Codeurs, I’m constantly gathering links and need to create quick shownotes, which is essentially… a summary.

My first attempt to solve this was a custom Gemini Gems I created: a personalized chatbot that could summarize links. It worked, but I often ran into a wall: it couldn’t access paywalled content, pages that required a login, or dynamically generated sites that I was already viewing in my browser. The solution was clear: I needed to bring the summarization to the content, not the other way around. The idea for a Chrome extension was born.

Read more...

Visualizing ADK multiagent systems

Let me share an interesting experiment I worked on to visualize your AI agent structure, more specifically, Agent Development Kit (ADK) multiagents.

The more complex your agents become, as you split tasks and spin off more specialized and focused sub-agents, the harder it is to see what your system is really made of, and how the interactions happen between the various components.

This is also something I experienced when I was covering Google Cloud Workflows: the more steps in the workflow, the more loops I had, indirections, conditions, etc, the trickier it was to understand and debug. And sometimes, as the saying goes, a picture is worth a thousand words. So when I was working on my recent series of articles on ADK agentic workflows (drawing diagrams by hand) this idea of experimenting with an ADK agent visualizer came up immediately.

Read more...

Mastering agentic workflows with ADK: the recap

Over the past few articles, we’ve taken a deep dive into the powerful agentic workflow orchestration capabilities of the Agent Development Kit (ADK) for Java. We’ve seen how to build robust, specialized AI agents by moving beyond single, monolithic agents. We’ve explored how to structure our agents for:

In this final post, let’s bring it all together. We’ll summarize each pattern, clarify when to use one over the other, and show how their true power is unlocked when you start combining them.

Read more...

Mastering agentic workflows with ADK: Loop agents

Welcome to the final installment of our series on mastering agentic workflows with the ADK for Java. We’ve covered a lot of ground:

Now, we’ll explore a pattern that enables agents to mimic a fundamental human problem-solving technique: iteration. For tasks that require refinement, trial-and-error, and self-correction, the ADK provides a LoopAgent.

Read more...

Mastering agentic workflows with ADK for Java: Parallel agents

Let’s continue our exploration of ADK for Java (Agent Development Kit for building AI agents). In this series, we’ve explored two fundamental agentic workflows:

But what if your problem isn’t about flexibility or a fixed sequence? What if it’s about efficiency? Some tasks don’t depend on each other and can be done at the same time. Why wait for one to finish before starting the next?

Read more...

Mastering agentic workflows with ADK for Java: Sequential agents

In the first part of this series, we explored the “divide and conquer” strategy using sub-agents to create a flexible, modular team of AI specialists. This is perfect for situations where the user is in the driver’s seat, directing the flow of conversation. But what about when the process itself needs to be in charge?

Some tasks are inherently linear. You have to do Step A before Step B, and Step B before Step C. Think about a CI/CD pipeline: you build, then you test, then you deploy. You can’t do it out of order… or if you do, be prepared for havoc!

Read more...

Mastering agentic workflows with ADK for Java: Sub-agents

Let me come back to the Agent Development Kit (ADK) for Java! We recently discussed the many ways to expand ADK agents with tools. But today, I want to explore the multi-agentic capabilities of ADK, by talking about sub-agent workflows.

In upcoming articles in this series, we’ll also talk about sequential, parallel, and loop flows.

The “divide and conquer” strategy

Think of building a complex application. You wouldn’t put all your logic in a single, monolithic class, would you? You’d break it down into smaller, specialized components. The sub-agent workflow applies this same “divide and conquer” principle to AI agents.

Read more...

AI Agents, the New Frontier for LLMs

I recently gave a talk titled “AI Agents, the New Frontier for LLMs”. The session explored how we can move beyond simple request-response interactions with Large Language Models to build more sophisticated and autonomous systems.

If you’re already familiar with LLMs and Retrieval Augmented Generation (RAG), the next logical step is to understand and build AI agents.

What makes a system “agentic”?

An agent is more than just a clever prompt. It’s a system that uses an LLM as its core reasoning engine to operate autonomously. The key characteristics that make a system “agentic” include:

Read more...

Expanding ADK AI agent capabilities with tools

In a nutshell, the AI agent equation is the following:

AI Agent = LLM + Memory + Planning + Tool Use

AI agents are nothing without tools! And they are actually more than mere Large Language Model calls. They require some memory management to handle the context of the interactions (short term, long term, or contextual information like in the Retrieval Augmented Generation approach. Planning is important (with variations around the Chain-of-Thought prompting approach, and LLM with reasoning or thinking capabilities) for an agent to realize its tasks.

Read more...

Building an MCP server with Quarkus and deploying on Google Cloud Run

As I’m contributing to ADK (Agent Development Kit) for Java, and LangChain4j (the LLM orchestration framework) I interact with MCP (Model Context Protocol) servers and tools to further expand the capabilities of my LLMs.

Recently, I showed how to vibe-code an MCP server using Micronaut. You know I usually talk about Micronaut, but this time, I wanted to experiment with Quarkus, and in particular with its built-in support for implementing MCP servers.

Getting started with Quarkus’ MCP support

I created a brand new Quarkus project from IntelliJ IDEA, with its Quarkus template, and I added a couple key dependencies for JSON marshalling, but even more important, for the MCP support:

Read more...