❯ Guillaume Laforge

Generative-Ai

Semantic code search for Programming Idioms with LangChain4j and Vertex AI embedding models

By Guillaume Laforge & Valentin Deleplace The Programming Idioms community website created by Valentin lets developers share typical implementations in various programming languages for usual tasks like printing the famous β€œHello World!” message, counting the characters in a string, sorting collections, or formatting dates, to name a few. And many more: there are currently 350 idioms, covering 32 programming languages. It’s a nice way to discover how various languages implement such common tasks! Read more...

Redacting sensitive information when using Generative AI models

As we are making our apps smarter with the help of Large Language Models, we must keep in mind that we are often dealing with potentially sensitive information coming from our users. In particular, in the context of chatbots, our application users have the ability to input any text in the conversation. Personally Identifiable Information (PII) should be dealt with the highest level of attention, because we care about our users, we don’t want to leak their personal details, and we must comply with all sorts of laws or regulations. Read more...

Data extraction: The many ways to get LLMs to spit JSON content

Data extraction from unstructured text is a very important task where LLMs shine, as they understand human languages well. Rumor has it that 80% of the worldwide knowledge and data comes in the form of unstructured text (vs 20% for data stored in databases, spreadsheets, JSON/XML, etc.) Let’s see how we can get access to that trove of information thanks to LLMs. In this article, we’ll have a look at different techniques to make LLMs generate JSON output and extract data from text. Read more...

Things you never dared to ask about LLMs

Along my learning journey about generative AI, lots of questions poppep up in my mind. I was very curious to learn how things worked under the hood in Large Language Models (at least having an intuition rather than knowing the maths in and out). Sometimes, I would wonder about how tokens are created, or how hyperparameters influence text generation. Before the dotAI conference last week, I was invited to talk at the meetup organised by DataStax. Read more...

Advanced RAG Techniques

Retrieval Augmented Generation (RAG) is a pattern to let you prompt a large language model (LLM) about your own data, via in-context learning by providing extracts of documents found in a vector database (or potentially other sources too). Implementing RAG isn’t very complicated, but the results you get are not necessarily up to your expectations. In the presentations below, I explore various advanced techniques to improve the quality of the responses returned by your RAG system: Read more...

A Gemini and Gemma tokenizer in Java

It’s always interesting to know how the sausage is made, don’t you think? That’s why, a while ago, I looked at embedding model tokenization, and I implemented a little visualization to see the tokens in a colorful manner. Yet, I was still curious to see how Gemini would tokenize text… Both LangChain4j Gemini modules (from Vertex AI and from Google AI Labs) can count the tokens included in a piece of text. Read more...

Lots of new cool Gemini stuff in LangChain4j 0.35.0

While LangChain4j 0.34 introduced my new Google AI Gemini module, a new 0.35.0 version is already here today, with some more cool stuff for Gemini and Google Cloud! Let’s have a look at what’s in store! Gemini 1.5 Pro 002 and Gemini 1.5 Flash 002 This week, Google announced the release of the new versions of the Google 1.5 models: google-1.5-pro-002 google-1.5-flash-002 Of course, both models are supported by LangChain4j! The Google AI Gemini module also supports the gemini-1. Read more...

New Gemini model in LangChain4j

A new version of LangChain4j, the super powerful LLM toolbox for Java developers, was released today. In 0.34.0, a new Gemini model has been added. This time, this is not the Gemini flavor from Google Cloud Vertex AI, but the Google AI variant. It was a frequently requested feature by LangChain4j users, so I took a stab at developing a new chat model for it, during my summer vacation break. Read more...

Let LLM suggest Instagram hashtags for your pictures

In this article, we’ll explore another great task where Large Language Models shine: entity and data extraction. LLMs are really useful beyond just mere chatbots (even smart ones using Retrieval Augmented Generation). Let me tell you a little story of a handy application we could build, for wannabe Instagram influencers! Great Instagram hashtags, thanks to LLMs When posting Instagram pictures, I often struggle with finding the right hashtags to engage with the community. Read more...

Gemini Nano running locally in your browser

Generative AI use cases are usually about running large language models somewhere in the cloud. However, with the advent of smaller models and open models, you can run them locally on your machine, with projects like llama.cpp or Ollama. And what about in the browser? With MediaPipe and TensorFlow.js, you can train and run small neural networks for tons of fun and useful tasks (like recognising hand movements through the webcam of your computer), and it’s also possible to run Gemma 2B and even 7B models. Read more...