❯ Guillaume Laforge

Machine-Learning

Hands on Codelabs to dabble with Large Language Models in Java

Hot on the heels of the release of Gemini, I’d like to share a couple of resources I created to get your hands on large language models, using LangChain4J, and the PaLM 2 model. Later on, I’ll also share with you articles and codelabs that take advantage of Gemini, of course.

The PaLM 2 model supports 2 modes:

  • text generation,
  • and chat.

In the 2 codelabs, you’ll need to have created an account on Google Cloud, and created a project. The codelabs will guide you through the steps to setup the environment, and show you how to use the Google Cloud built-in shell and code editor, to develop in the cloud.

Read more...

Get Started with Gemini in Java

Google announced today the availability of Gemini, its latest and more powerful Large Language Model. Gemini is multimodal, which means it’s able to consume not only text, but also images or videos.

I had the pleasure of working on the Java samples and help with the Java SDK, with wonderful engineer colleagues, and I’d like to share some examples of what you can do with Gemini, using Java!

First of all, you’ll need to have an account on Google Cloud and created a project. The Vertex AI API should be enabled, to be able to access the Generative AI services, and in particular the Gemini large language model. Be sure to check out the instructions.

Read more...

Tech Watch #1 — Sept 29, 2023

Inspired my by super boss Richard Seroter with his regular daily reading list, I decided to record and share my tech watch, every week (or so). I always take notes of interesting articles I read for my own curiosity and to remember them when I need those references later on. But also to share them with Les Cast Codeurs podcast! So I hope it’ll be interesting to my readers too!

  • LLMs Demand Observability-Driven Development
    A great tribune from Charity Majors on the importance of observability-driven development, in the wake of large language models. Developing LLM based solutions is typically not something you can do with a classical test-driven approach, as you only really get proper test data when you have it coming from production usage. Furthermore, LLMs are pretty much unpredictable and underterministic. But with observability in place, you can better understand why there’s latency in some scenarios, why the LLM came to certain solutions, and this will help you improve as your learn along the way.

    Read more...

Discovering LangChain4J, the Generative AI orchestration library for Java developers

As I started my journey with Generative AI and Large Language Models, I’ve been overwhelmed with the omnipresence of Python. Tons of resources are available with Python front and center. However, I’m a Java developer (with a penchant for Apache Groovy, of course). So what is there for me to create cool new Generative AI projects?

When I built my first experiment with the PaLM API, using the integration within the Google Cloud’s Vertex AI offering, I called the available REST API, from my Micronaut application. I used Micronaut’s built-in mechanism to marshal / unmarshal the REST API constructs to proper classes. Pretty straightfoward.

Read more...

Creating kids stories with Generative AI

Last week, I wrote about how to get started with the PaLM API in the Java ecosystem, and particularly, how to overcome the lack of Java client libraries (at least for now) for the PaLM API, and how to properly authenticate. However, what I didn’t explain was what I was building! Let’s fix that today, by telling you a story, a kid story! Yes, I was using the trendy Generative AI approach to generate bedtime stories for kids.

Read more...

Getting started with the PaLM API in the Java ecosystem

Large Language Models (LLMs for short) are taking the world by storm, and things like ChatGPT have become very popular and used by millions of users daily. Google came up with its own chatbot called Bard, which is powered by its ground-breaking PaLM 2 model and API. You can also find and use the PaLM API from withing Google Cloud as well (as part of Vertex AI Generative AI products) and thus create your own applications based on that API. However, if you look at the documentation, you’ll only find Python tutorials or notebooks, or also explanations on how to make cURL calls to the API. But since I’m a Java (and Groovy) developer at heart, I was interested in seeing how to do this from the Java world.

Read more...

Smarter Applications With Document Ai Workflows and Cloud Functions

At enterprises across industries, documents are at the center of core business processes. Documents store a treasure trove of valuable information whether it’s a company’s invoices, HR documents, tax forms and much more. However, the unstructured nature of documents make them difficult to work with as a data source. We call this “dark data” or unstructured data that businesses collect, process and store but do not utilize for purposes such as analytics, monetization, etc. These documents in pdf or image formats, often trigger complex processes that have historically relied on fragmented technology and manual steps. With compute solutions on Google Cloud and Document AI, you can create seamless integrations and easy to use applications for your users. Document AI is a platform and a family of solutions that help businesses to transform documents into structured data backed by machine learning. In this blog post we’ll walk you through how to use Serverless technology to process documents with Cloud Functions, and with workflows of business processes orchestrating microservices, API calls, and functions, thanks to Workflows.

Read more...

Machine learning applied music generation with Magenta

I missed this talk from Alexandre Dubreuil, when attending Devoxx Belgium 2019, but I had the chance to watch while doing my elliptical bike run, confined at home. It’s about applying Machine Learning to music generation, thanks to the Magenta project, which is based on Tensorflow.

I like playing music (a bit of piano & guitar) once in a while, so as a geek, I’ve also always been interested in computer generated music. And it’s hard to generate music that actually sounds pleasant to the ear! Alexandre explains that it’s hard to encode the rules a computer could follow to play music, but that machine learning is pretty interesting, as it’s able to learn complex functions, thus understanding what does sound good.

Read more...

Machine learning APIs with Apache Groovy

At GR8Conf Europe last year, I talked  about how to take advantage of the Google Cloud machine learning APIs  using Apache Groovy.

With Groovy, you can call the Vision API that recognises what’s in your pictures, or reads text.

You can invoke the Natural Language API to understand the structure of your text.

With the Speech-To-Text API, you can get transcriptions of what’s been said in an audio stream, or with Text-To-Spech, you can also generate human-like voices from your own text.

Read more...

Chatbots: switching the second gear

My buddy Wassim and I were back on stage together to talk about chatbots, with Actions on Google and Dialogflow, at DevFest Lille and Best of Web Paris. I’d like to share with you the slides of the presentation (the video has been recorded and will be available at a later time.)

You might be interested in those two codelabs to get started on this journey:

Here’s the presentation given at DevFest Lille:

Read more...